

Photo credit: Ian Bryson

Systematic River Restoration Planning using Network Analysis, Optimisation, and GIS.

Presenter: Greig Oldford¹ Co-authors: P. Duinker¹, E. Gunn¹, D. Kehler²

Dalhousie University, Halifax, Nova Scotia, Canada
Parks Canada, Halifax, Nova Scotia, Canada

Fisheries and Oceans Pêches et Océans Canada Canada

Department of Fisheries and Oceans Maritimes

Motivations / Objectives

- 1. Where should we focus our efforts?
- 2. How can we assess trade-offs?
- 3. How can we use our budget wisely?

Problem Overview

Reasons why optimisation is not more prevalent?

- Expertise required
- Transparency
- Flexibility

Toolset Development

Results – Connectivity Type

"Directed" Connectivity "Undirected" Connectivity

LO

Results – Culverts Vs. Dams

Results – Quantification Method

Four Treatments

Bright Blue Highlighted = Included

Results – Optimisation

Results – Toolset

FIPEX Toolset for ArcGIS (free product of Fisheries & Oceans, Canada) with optimisation integrated (free, open source)

thefishpassageextension.net

Communicating Restoration Planning

Importance of...

- Systemic Connectivity
- Adequate Data
- Budget Selection
- Prioritisation Method

Thank You!

Contact: Greig Oldford Email: gr336681@dal.ca Phone: +1 (902) 448-2267 Thefishpassageextension.net Cvm-environmental.com

SCHOOL FOR RESOURCE AND ENVIRONMENTAL STUDIES

Fisheries and Oceans Canada Pêches et Océans Canada

ni Chris Broo

References

- Department of Fisheries and Oceans Canada [DFO] (2010) FIPEX Documentation.
- Kemp P. S. & O'Hanley J. (2010) Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. *Fisheries Management and Ecology*, **17**, 297-322.
- O'Hanley J. (2011) Open rivers: Barrier removal planning and the restoration of free-flowing rivers. *Journal of Environmental Management*, **92**, 3112-3120.
- O'Hanley J. & Tomberlin D. (2005) Optimising the removal of small fish passage barriers. *Environmental Modeling & Assessment*, **10**, 85-98.

Mersey River

8 dams 181 culverts

St. Margaret's Bay River

9 dams 125 culverts

Sheet Harbour River

6 dams 250 culverts

Optimal Connectivity Gained by Restoration for Various Budgets

Problem Overview

Challenge: Maximise network reconnected to outflow

Assume:

- All barriers cost the same
- Budget is enough to 'remove' one barrier only

Problem Overview

